Volume 5, Issue 5, September 2017, Page: 76-85
Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi
Ricardo Gobato, State Secretariat for Education of Paraná, Laboratory of Biophysics and Molecular Modeling, Bela Vista do Paraíso, Paraná, Brazil
Alireza Heidari, Faculty of Chemistry, California South University, Irvine, California, USA
Received: Jun. 20, 2017;       Accepted: Jul. 17, 2017;       Published: Oct. 18, 2017
DOI: 10.11648/j.sjac.20170505.13      View  512      Downloads  48
Abstract
Inorganic crystals have been used in the most diverse electronic systems since the nineteenth century, which apply to the wide variety of technological applications, which are the quartz crystals are the most used. Elements such as beryllium, lithium, silicon and selenium are widely used. The difficulty of finding such crystals from the combination of elements in nature or synthesized, suggest an advanced study of the same. In this sense, these elements were chosen because of the physical-chemical properties of each one, to simulate a seed molecule whose arrangement would be formed by the combination of these, aiming at the future development of a crystal to be used technologically. A study using computer programs with ab initio method was applied and the quantum chemistry was utilized through Molecular Mechanics, Hartree-Fock, Møller-Plesset and Density Functional Theory, on several bases. The main focus was to obtain a stable molecular structure acceptable to quantum chemistry. As a result of the likely molecular structure of the arrangement of a crystal was obtained, beyond the dipole moment, thermal energy, heat of vaporization and entropy of the molecule. The simulated molecule has a cationic molecular structure, in the atoms Selenium and Silicon. As a consequence, it has a strong electric dipole moment. Due to its geometry, it presents a probable formation structure of a crystal with a tetrahedral and hexahedral crystal structure.
Keywords
Beryllium, DFT, Lithium, Molecular Geometry, Selenium, Silicon
To cite this article
Ricardo Gobato, Alireza Heidari, Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi, Science Journal of Analytical Chemistry. Vol. 5, No. 5, 2017, pp. 76-85. doi: 10.11648/j.sjac.20170505.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
R. E. Newnham. Properties of materials. Anisotropy, Simmetry, Structure. New York, 2005.
[2]
CC BY-NC-SA 3.0. Creative commons. Wikipedia, The Free Encyclopedia, May 2016. CC BY-NC-SA 3.0.
[3]
R. J. Matthys. Crystal Oscillator Circuits. Malabar, Florida 32950, 1992.
[4]
C. D. Gribble and A. J. Hall. A Practical Introduction to Optical Mineralogy. 1985.
[5]
N. C. Braga. Como funciona o cristal na eletronicaˆ (art 423). Instituto Newton C. Braga, July 2015.
[6]
Computational chemistry software. hyperchem 7.5 evaluation. Hypercube, Inc., 2003.
[7]
M. S. Gordon et al. General atomic and molecular electronic structure system (gamess). J. Comput. Chem., 14:1347–1363, 1993.
[8]
R. Gobato; A. Gobato and D. F. G. Fedrigo. Inorganic arrangement crystal beryllium, lithium, selenium and silicon. In XIX Semana da F´ısica. Simposio´ Comemorativo dos 40 anos do Curso de F´ısica da Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitario´ Cx. Postal 10.011, 86.057-970, Londrina/PR, 2014. Universidade Estadual de Londrina (UEL).
[9]
R. Gobato; A. Gobato and D. F. G. Fedrigo. Inorganic arrangement crystal beryllium, lithium, selenium and silicon. Cornell University Library. arXiv.org, Aug 01 2015. Atomic and Molecular Clusters (physics.atm-clus); Materials Science (cond-mat.mtrl-sci).
[10]
Concise encyclopedia chemistry. De Gruyter; Rev Sub edition (February 1994), 1994.
[11]
R. Nave. Abundances of the elements in the earth’s crust. Georgia State University.
[12]
M. J. Frisch; G. Scalmani; T. Vreven and G. Zheng. Analytic second derivatives for semiempirical models based on MNDO. Mol. Phys, 2009.
[13]
W. Thiel and A. A. Voityuk. Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group. J. Phys. Chem., (100):616–26, 1996.
[14]
W. Thiel and A. A. Voityuk. Extension of the MNDO formalism to d orbitals: Integral approximations and preliminary numerical results. Theor. Chem. Acc., (81):391–404, 1992.
[15]
J. J. P. Stewart. Optimization of parameters for semiempirical methods. I. Methods. J. Comp. Chem., (10):209–20, 1989.
[16]
J. J. P. Stewart. Optimization of parameters for semiempirical methods. II. Applications. J. Comp. Chem., (10):221–64, 1989.
[17]
R. Gobato. Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.). PJSE, 3(1):1–9, January 2017.
[18]
The Cambridge Crystallographic Data Centre (CCDC). Mercury - crystal structure visualisation, exploration and analysis made easy, May 2012. Mercury 3.1 Development (Build RC5).
[19]
M. D. Hanwell; D. E. Curtis; D. C. Lonie; T. Vandermeersch; E. Zurek and G. R. Hutchison. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(16), 2012.
[20]
A. Szabo and N. S. Ostlund. Modern Quantum Chemistry. Dover Publications, New York, 1989.
[21]
I. N. Levine. Quantum Chemistry. Pearson Education (Singapore) Pte. Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed edition, 2003.
[22]
K. Ohno; K. Esfarjani and Y. Kawazoe. Computational Material Science. Springer-Verlag, Berlin, 1999.
[23]
K. Wolfram and M. C. Hothausen. Introduction to DFT for Chemists. John Wiley & Sons, Inc. New York, 2nd ed edition, 2001.
[24]
P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., (136): B864–B871, 1964.
[25]
W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., (140): A1133, 1965.
[26]
J. M. Thijssen. Computational Physics. Cambridge University Press, Cambridge, 2001.
[27]
J. P. Perdew; M. Ernzerhof and K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys, 105(22):9982–9985, 1996.
[28]
K. Kim and K. D. Jordan. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J. Phys. Chem., 40(98):10089–10094, 1994.
[29]
P. J. Stephens; F. J. Devlin; C. F. Chabalowski and M. J. Frisch. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 45(98):11623–11627, 1994.
[30]
A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A., 38(6):3098–3100, 1988.
[31]
C. Lee; W. Yang and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37(2):785–789, 1988.
[32]
S. H. Vosko; L. Wilk and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys, 58(8):1200–1211, 1980.
[33]
A. D. Becke. Density-functional thermochemistry. The role of exact exchang. J. Chem. Phys., 98(7):5648–5652, 1993.
[34]
J. B. Foresman and Æleen Frisch. Exploring Chemistry with Electronic Structure Methods. Gaussian, Inc. Pittsburgh, PA, 2nd ed edition, 1996.
[35]
L. Mainali; D. R. Mishra and M. M. Aryal. First principles calculations to study the equilibrium configuration of ozone molecule. Department of Biophysics. Medical College of Wisconsin. 8701 Watertown Plank Road. Milwaukee, WI 53226.
[36]
J. P. Lowe and K. A. Peterson. Quantum Chemistry. Elsevier Inc., third edition edition, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA; 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA; 84 Theobalds Road, London WC1X 8RR, UK. 2006.
[37]
J. J. W. Mc Douall. Computational Quantum Chemistry. Molecular Structure and Properties in Silico. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK, 2013.
[38]
W. Yang C. Lee and R. G. Parr. Phys. Rev. B, 37:785–789, 1988.
[39]
E. Polak. Computational Methods in Optimization, volume 77. Elsevier, 111 Fifth Avenue, New York, New York 10003, 1971.
[40]
Anthony K. Rappe´ and Carla J. Casewit. Molecular Mechanics Across Chemistry. University Science Books, 55D Gate Five Road, Sausalito, CA 94965, 1952(1997).
[41]
Hypercube. Hyperchem.7.5 evaluation, 2003. http://www.hyper.com/.
[42]
R. Gobato. Benzoca´ına, um estudo computacional. Master’s thesis, Universidade Estadual de Londrina (UEL), 2008.
[43]
W. J. Hehre; R. F. Stewart and J. A. Pople. Self-Consistent Molecular Orbital Methods. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., (51):2657–64, 1969.
[44]
J. B. Collins; P. v. R. Schleyer; J. S. Binkley; and J. A. Pople. Self-Consistent Molecular Orbital Methods. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys., (64):5142–51, 1976.
[45]
R. Gobato; A. Gobato and D. F. G. Fedrigo. Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus Latifolia Var Tahiti). Parana Journal of Science and Education, 1(1):1–10, November 2015.
[46]
R. Gobato; D. F. G. Fedrigo and A. Gobato. Allocryptopine, Berberine, Chelerythrine, Copsitine, Dihydrosanguinarine, Protopine and Sanguinarine. Molecular geometry of the main alkaloids found in the seeds of Argemone Mexicana Linn. PJSE, 1(2):7–16, December 2015.
[47]
A. J. R. Nardy; F. B. Machado; A. Zanardo and T. M. B. Galembeck. Mineralogia Optica de cristais transparentes. Parte pratica. Unesp: Cultura Academica, 2010.
[48]
T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. The atoms boron through neon and hydrogen. J. Chem. Phys., (90):1007–23, 1989.
[49]
R. A. Kendall; T. H. Dunning Jr. and R. J. Harrison. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys., (96):6796–806, 1992.
[50]
D. E. Woon and T. H. Dunning Jr. Gaussian-basis sets for use in correlated molecular calculations. The atoms aluminum through argon. J. Chem. Phys., (98):1358–71, 1993.
[51]
K. A. Peterson; D. E. Woon and T. H. Dunning Jr. Benchmark calculations with correlated molecular wave functions. The classical barrier height of the H+H2 –¿ H2+H reaction. J. Chem. Phys., (100):7410–15, 1994.
[52]
A. K. Wilson; T. van Mourik and T. H. Dunning Jr. Gaussian basis sets for use in Correlated Molecular Calculations. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem), (388):339–49, 1996.
[53]
W. J. Stevens; H. Basch and M. Krauss. Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms. J. Chem. Phys., (81):6026–33, 1984.
[54]
W. J. Stevens; M. Krauss; H. Basch and P. G. Jasien. Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms. Can. J. Chem., (70):612–30, 1992.
[55]
T. R. Cundari and W. J. Stevens. Effective core potential methods for the lanthanides. J. Chem. Phys., (98):5555–65, 1993.
[56]
T. H. Dunning Jr. and P. J. Hay. in Modern Theoretical Chemistry, volume 3. Plenum, New York, 1977.
[57]
P. Fuentealba; H. Preuss; H. Stoll and L. v. Szentpaly´. A Proper Account of Core-polarization with Pseudopotentials - Single Valence-Electron Alkali Compounds. Chem. Phys. Lett., pages 418–22, 1982.
[58]
D. M. Silver; S. Wilson and W. C. Nieuwpoort. Universal basis sets and transferability of integrals. Int. J. Quantum Chem., (14):635–39, 1978.
[59]
D. M. Silver and W. C. Nieuwpoort. Universal atomic basis sets. Chem. Phys. Lett., (15):421–22, 1978.
[60]
J. R. Mohallem; R. M. Dreizler and M. Trsic. A griffin-Hill-Wheeler version of the Hartree-Fock equations. Int. J. Quantum Chem., 30(S20):45–55, 1986. Quant. Chem. Symp.
[61]
J. R. Mohallem and M. Trsic. A universal Gaussian basis set for atoms Li through Ne based on a generator coordinate version of the Hartree-Fock equations. J. Chem. Phys., (86):5043–44, 1987.
[62]
H. F. M. da Costa; M. Trsic and J. R. Mohallem. Universal Gaussian and Slater-type basis-sets for atoms He to Ar based on an integral version of the Hartree-Fock equations. Mol. Phys., (62):91–95, 1987.
[63]
A. B. F. da Silva; H. F. M. da Costa and M. Trsic. Universal Gaussian and Slater-type bases for atoms H to Xe based on the generator-coordinate Hartree-Fock method. Ground and certain low-lying excited-states of the neutral atoms. Mol. Phys, (68):433–45, 1989.
[64]
F. E. Jorge; E. V. R. de Castro and A. B. F. da Silva. A universal Gaussian basis set for atoms Cerium through Lawrencium generated with the generator coordinate Hartree-Fock method. J. Comp. Chem., (18):1565–69, 1997.
[65]
F. E. Jorge; E. V. R. de Castro and A. B. F. da Silva. Accurate universal Gaussian basis set for hydrogen through lanthanum generated with the generator coordinate Hartree-Fock method. Chem. Phys, (216):317–21, 1997.
[66]
E. V. R. de Castro and F. E. Jorge. Accurate universal gaussian basis set for all atoms of the periodic table. J. Chem. Phys., (108):5225–29, 1998.
[67]
J. A. Pople; M. Head-Gordon and K. Raghavachari. Quadratic configuration interaction - a general technique for determining electron correlation energies. J. Chem. Phys., (87):5968–75, 1987.
[68]
J. Gauss and D. Cremer. Analytical evaluation of energy gradients in quadratic configuration-interaction theory. Chem. Phys. Lett., (150):280–86, 1988.
[69]
E. A. Salter; G. W. Trucks and R. J. Bartlett. Analytic energy derivatives in many-body methods. i. first derivatives. J. Chem. Phys., (90):1752–66, 1989.
[70]
P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys., (82):270–83, 1985.
[71]
W. R. Wadt and P. J. Hay. Ab initio effective core potentials for molecular calculations - potentials for main group elements Na to Bi. J. Chem. Phys., (82):284–98, 1985.
[72]
P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations - potentials for K to Au including the outermost core orbitals. J. Chem. Phys., (82):299–310, 1985.
[73]
F. Weigend and R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., (7):3297–305, 2005.
[74]
F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys., (8):1057–65, 2006.
[75]
E. Eliav. Elementary introduction to Molecular Mechanics and Dynamics, Jun 2013.
[76]
W. J. Hehre. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction. Inc., Irvine, CA, 2003.
[77]
M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years. Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), pages 1167–1189, 2005. Amsterdam.
[78]
R. G. Parr and W. Yang. Density Functional Theory. 1989.
[79]
J. B. Foresman; M. Head-Gordon; J. A. Pople and M. J. Frisch. Toward a Systematic Molecular Orbital Theory for Excited States. J. Phys. Chem., (96):135–49, 1992.
[80]
C. Møller and M. S. Plesset. Note on an approximation treatment for many-electron systems. Phys. Rev., (46):0618–22, 1934.
[81]
M. J. Frisch; M. Head-Gordon and J. A. Pople. Direct MP2 gradient method. Chem. Phys. Lett., (166):275–80, 1990.
[82]
M. J. Frisch; M. Head-Gordon and J. A. Pople. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett., (166):281–89, 1990.
[83]
M. Head-Gordon; J. A. Pople and M. J. Frisch. MP2 energy evaluation by direct methods. Chem. Phys. Lett., (153):503–06, 1988.
[84]
S. Saebø and J. Almløf. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett., (154):83–89, 1989.
[85]
M. Head-Gordon and T. Head-Gordon. Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer; Chem. Phys. Lett; (220):122–28, 1994.
[86]
R. J. Bartlett and G. D. Purvis III. Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem. Int. J. Quantum Chem., (14):561–81, 1978.
[87]
J. A. Pople; R. Krishnan; H. B. Schlegel and J. S. Binkley. Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Quantum Chem; (14):545–60, 1978.
[88]
J. C´ıvzek. in Advances in Chemical Physics, volume 14. Wiley Interscience, New York, 35, 1969.
[89]
G. D. Purvis III and R. J. Bartlett. A full coupled-cluster singles and doubles model - the inclusion of disconnected triples. J. Chem. Phys; (76):1910–18, 1982.
[90]
G. E. Scuseria; C. L. Janssen and H. F. Schaefer III. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys, (89):7382–87, 1988.
[91]
G. E. Scuseria and H. F. Schaefer III. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration-interaction (QCISD)? J. Chem. Phys; (90):3700–03, 1989.
[92]
J. A. Pople; R. Seeger and R. Krishnan. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quantum Chem; Suppl. (Y-11):149–63, 1977.
[93]
K. Raghavachari; H. B. Schlegel and J. A. Pople. Derivative studies in configuration-interaction theory. J. Chem. Phys; (72):4654–55, 1980.
[94]
K. Raghavachari and J. A. Pople. Calculation of one-electron properties using limited configuration-interaction techniques. Int. J. Quantum Chem; (20):1067–71, 1981.
Browse journals by subject