Phytoremediation of Contaminated Soils from Challawa Industrial Estate, Kano-Nigeria
U. Abdullahi,
A. A. Audu,
Kalimullah,
L. Shuaibu
Issue:
Volume 4, Issue 5, September 2016
Pages:
59-65
Received:
22 August 2016
Accepted:
5 September 2016
Published:
22 September 2016
Abstract: Field studies to examine the phytoremediation potential of some plants for metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in metals contaminated soils of Challawa industrial estate, Kano has been carried out. A total of one hundred and eighty (180) samples comprising of 80 (soils), 20 (effluents), and 80 (plant parts) of Jatropha (Jatropha curcas), Neem (Azadirachta indica) and Baobab (Adansonia digitata) were analyzed. 0.50g of the plant tissue and 1.0g of soil sample and 50mL of the effluent sample were digested using triacid digestion method and the levels of the metals were determined by the use of atomic absorption spectrophotometry. The mean levels of the metals in plants and soils from contaminated and control sites were found to be in the sequence of Fe (406.27±45.93)> Zn (137.20±8.00)> Cu (118.60±0.00)> Cd (62.57±6.86)> Mn (21.53±1.79)> Ni (14.36±2.22)> Cr (13.73±1.79)> Pb (12.80±0.00) and Fe (130.23±18.01)> Zn (65.36±4.90)> Cu (26.22±5.50)> Cd (23.08±2.43)> Ni (5.70±0.00)> Mn (4.86±2.21)> Cr (4.80±2.10)> Pb (3.03±1.50) respectively. The contamination factor (CF) of all the metals in the plants were found to be in the sequence of Cd (8.45±1.42)> Cu (2.52±1.00)> Cr (2.28±0.00)> Zn (1.80±1.19)> Fe (1.56±0.00)> Pb (1.49±0.11)> Mn (1.09±0.18)> Ni (1.00±0.06). The results showed that these plants can be used for the phytoextraction of the metals from contaminated soils. The values of bioaccumulation and translocation factors were also found to be more than one in almost all cases. From these results it could be recommended that the three plants investigated would be ideal for phytoremediation in multi-metal contaminated soils.
Abstract: Field studies to examine the phytoremediation potential of some plants for metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in metals contaminated soils of Challawa industrial estate, Kano has been carried out. A total of one hundred and eighty (180) samples comprising of 80 (soils), 20 (effluents), and 80 (plant parts) of Jatropha (Jatropha curcas), Nee...
Show More
A New Visible Spectrophotometric Approach for Mutual Determination of Amoxicillin and Metoclopramide Hydrochloride in Pharmaceuticals After Cloud Point Extraction
Zuhair A-A. Khammas,
Hawraa M. Abdulkareem
Issue:
Volume 4, Issue 5, September 2016
Pages:
66-76
Received:
8 September 2016
Accepted:
26 September 2016
Published:
18 October 2016
Abstract: A new approach has been developed and validated for the mutual determination of the drugs of amoxicillin (AMX) and Metoclopramide hydrochloride (MCP. HCl) in pharmaceuticals. The method is based on the reaction of diazotized Metoclopramide with amoxicillin in an alkaline medium to form an intense orange water-soluble product which can be easily extracted from micelles of a non-ionic surfactant (Triton X-114) and both drugs measured sequentially at the same absorption maximum of 479 nm. The optimization of all experimental variables was individually performed to obtain high extraction efficiency for both target medicaments. Under the optimized conditions, Beer’s law was obeyed in the concentration range of 0.3-3.0 μg mL-1 (r=0.9995) for both AMX and MCP. The enrichment factors were found to 214 and 90.85 fold for AMX and MCP, led to obtaining the detection limits of 0.083 and 0.098 μg mL5, and a superb sensitivity in terms of the molar absorptivity of 2.35x105 and 2.25x10-1 L.mol5.cm-1, respectively. The mean recovery percentage of 97.77±1.72% (in AMX capsule) and 98.20±1.95 (in MCP ampoule); the precision (RSD %) ranged between 2.35-10.8% and 0.20-3.43% were obtained for AMX and MCP respectively. The proposed method was validated and applied for determination of AMX and MCP in various samples of the pharmaceutical preparations.
Abstract: A new approach has been developed and validated for the mutual determination of the drugs of amoxicillin (AMX) and Metoclopramide hydrochloride (MCP. HCl) in pharmaceuticals. The method is based on the reaction of diazotized Metoclopramide with amoxicillin in an alkaline medium to form an intense orange water-soluble product which can be easily ext...
Show More